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Poly(ADP-ribose) polymerases (PARPs) activate DNA repair mechanisms upon stress- and cytotoxin-induced
DNA damage, and inhibition of PARP activity is a lead in cancer drug therapy. We present a structural and
functional analysis of the PARP domain of human PARP-3 in complex with several inhibitors. Of these,
KU0058948 is the strongest inhibitor of PARP-3 activity. The presented crystal structures highlight key
features for potent inhibitor binding and suggest routes for creating isoenzyme-specific PARP inhibitors.

Introduction

PolyADP ribosylation is a ubiquitous protein modification
involved in the regulation of transcription, cell proliferation,
differentiation, and apoptosis.1,2 Of the 17 human poly(ADP
ribose) polymerase (PARP)a enzymes, at least PARP-1, PARP-2
and tankyrase-1 (PARP-5a) are required for the maintenance
of genome stability.3 PARP-1 has important roles in DNA
single-strand break and base excision repair.4 Inhibition of
PARP-1 activity may have beneficial effects in a variety of
diseases, including stroke, myocardial infarction, heart failure,
and diabetes mellitus, where extensive DNA damage may lead
to fatigue and tissue necrosis.5 PARP inhibitors also efficiently
and selectively kill BRCA2 defective tumors in monotherapy.6,7

While PARP inhibitors are in numerous clinical trials,8 it is
unclear whether they act on PARP-1 alone or also on other
PARP family members. Given the high degree of conservation
of the active sites among these proteins, off-target effects may
be expected. Therefore, to better understand the effects of PARP
inhibition in disease treatment, information on the specificity
and selectivity of PARP inhibitors is urgently needed.

Results and Discussion

PARP-3 is a poorly characterized family member with extensive
homology to PARP-1 and -2. We determined the crystal structure
of the PARP domain (residues 178-532) of human PARP-3.
Details of the structure determination and refinement are sum-
marized in Table S1 in the Supporting Information. The PARP-3
structure consists of an N-terminal R-helical domain and a
C-terminal R/�-domain (Figure 1). As expected based on sequence

similarity (∼35% identity between the PARP domains), this
structure is similar to the previously reported structures of the
PARP-1 and PARP-2 PARP domains.9-11 The C-terminal domain
contains the PARP signature motif (�-R-loop-�-R) on its inner
surface, forming the NAD+ donor binding crevice located between
the two domains. The C-terminal domain is also similar to that of
PARP-5a/tankyrase-1.12 The residues lining the active site are
largely conserved between PARP-1 and -3, apart from a few
notable exceptions.

The most important differences between the PARP-3 and
PARP-1 PARP domains lie in the loops surrounding the active
site. The donor site loop (D-loop) in PARP-3 (residues
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Figure 1. Comparison of PARP-3 and PARP-1 structures. Overall
comparison of the catalytic fragments of PARP-3 (PDB entry 3C4H)
and PARP-1 (PDB entry 2RD6). Blue to red, PARP-3; gray, PARP-1.
Ligand 2 from structure 3C4H is shown as a ball-and-stick model to
indicate the position of the active site between the domains. Loops
surrounding the acceptor site that differ the most between PARP-1 and
PARP-3 are labeled, as well as the D-loop lining the NAD+ binding
site. The D-loop in PARP-3 (residues 398-411) adopts a different
conformation, which affects packing of the long helix (residues
233-241) in the N-terminal domain. In addition the D-loop is four
residues shorter in PARP-3. These differences in the D-loops may affect
the binding affinities of the known PARP inhibitors. PARP-3 structure
3C4H superposes with an rmsd of 1.4 Å to human PARP-1 (2RD6;
319 CR atoms).
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398-411) is four residues shorter than in PARP-1, which results
in a slightly opened pocket between the donor site and the
N-terminal R-helix bundle (Figure 1). Further differences
between PARP-3 and PARP-1 are in a loop (residues 347-353)
near the acceptor site and a loop (residues 428-435) following
the PARP-signature motif (Figure 1). The crystal structure of
PARP-3 is described in further detail in the Supporting
Information.

We initially solved the structure of PARP-3 in complex with
the inhibitor analogue 1 (3ABA). To further explore potential
inhibitor interactions we assembled a small library of PARP-1
inhibitors based on the literature13,14 and evaluated their effect
on PARP-3178-532 using a thermal stabilization assay.15 This
screen revealed three compounds that significantly raised the
midpoints of the thermal transitions, namely 2 (DR2313),16 3
(PJ34),17 and 4 (KU0058948).18 The largest change was
observed with 4, which gave a shift of 14 K (Table 1).
Isothermal titration calorimetry (ITC) established the apparent
affinities of PARP-3 for these compounds and confirmed that 4
bound tighter to PARP-3 than did the other compounds (Table
1). Control experiments using the PARP domain of human
PARP-1 suggested that 4 bound about 3-fold tighter to PARP-1
than to PARP-3. The values we determined for PARP-1 compare
favorably with literature values (Table 1).

We investigated the ADP ribosylation activity of full-length
human PARP-3. In the presence of biotinylated NAD+, the
protein was capable of auto-ADP ribosylation (Figure 2) as well
as ADP ribosylation of histone H1, a previously unknown
substrate for PARP-3 (data not shown). Activity measurements
in the presence of the above PARP inhibitors established the
active concentration ranges for these compounds (Figure 2), and
these were in agreement with the binding constants determined

by ITC (Table 1). Compound 4 was the most potent inhibitor
of PARP-3 activity (Figure 2a and Supporting Information,
Figure S1), but 4 inhibited PARP-1 more potently than PARP-3
(Figure 2b), as expected from the apparent affinities determined
by ITC.

Table 1. Summary of PARP-3 Inhibitor Complexes Used in This Study

a Transition midpoints in thermal denaturation experiments. b Apparent Kd values as determined by isothermal titration calorimetry. For comparison,
apparent affinities for PARP-1654-1013 were also determined. c Previously published estimates for either Kd (compound 2, ref 16) or IC50 values (compound
3, ref 17, and compound 4, ref 18). d Transition midpoint for PARP-3178-532 alone (control).

Figure 2. Effect of canonical PARP inhibitors on the catalytic activity
of PARP-3. (a) Inhibition of PARP-3 auto-ADP ribosylation with
different inhibitors (bold numbers; see main text for identification).
Full length recombinant PARP-3 (250 nM) was automodified using
25 µM of biotinylated NAD+ as substrate. Note that compound 4 is
the most potent PARP-3 inhibitor. (b) Comparison of the dose-
dependent inactivation of PARP-1 and PARP-3 by compound 4. Full
length recombinant PARP-1 and PARP-3 were automodified in the
presence of the indicated concentrations of the inhibitor. Automodified
PARP-1 (upper panel) and PARP-3 (lower panel) were visualized by
Western blotting using an antibiotin antibody. Details of the assay
conditions are given in the Supporting Information.

Brief Articles Journal of Medicinal Chemistry, 2009, Vol. 52, No. 9 3109

D
ow

nl
oa

de
d 

by
 J

on
at

ha
n 

B
er

ry
 o

n 
Se

pt
em

be
r 

11
, 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 A
pr

il 
8,

 2
00

9 
| d

oi
: 1

0.
10

21
/jm

90
00

52
j



We solved crystal structures of PARP-3178-532 inhibitor
complexes with 1, 2, 3, and 4 at 2.1-2.8 Å resolution (Figure
3, Table 1, Supporting Information, Table S1, and Supporting
Information, Figure S2). In all four structures, the inhibitors
stack against the Tyr425 and Tyr414 side chains (Figure 3a and
Supporting Information, Figure S2). All compounds also form
hydrophobic interactions with the catalytic Glu514. In strong
contrast with the other complexes, the PARP-3 complex with
compound 4 features a number of key interactions between
protein and inhibitor that may explain its high affinity and potent
inhibitory and thermostabilizing effect (Figure 3a and Supporting
Information, Figure S2).

Although the nicotinamide binding pockets of PARP-3 and
PARP-1 are highly conserved, there are differences at the site
where known PARP inhibitors interact (Figure 3b). Notably the
D-loop (substitution Met402Ala between PARP-3 and PARP-
1, and PARP-1 specific Tyr889), the long helix of the C-terminal
lobe (Asp284Glu and Leu287Asp), and the N-terminal side of
the donor site (Thr386Ser, Asn387Arg, Val390Asn, and
Ile427His) all contain sequence differences between PARPs that
may be exploited for rational design of isoenzyme specific
inhibitors. This is best illustrated by interaction of 4 with the
D-loop of PARP-3, resulting in structural changes in the D-loop
and tighter binding. Compounds extending to the binding site
of the NAD+ adenosine moiety may clash with the PARP-3
D-loop similarly as 5 (FR257517)19 appears to clash with
Met402 (Figure 3b). Smaller inhibitors that mainly interact with
the nicotinamide binding pocket will likely bind to different
PARPs with similar affinity; on the other hand, inhibitors
interacting with the opposite end of the binding site are more
likely to contribute to selectivity among isoenzymes, as we show
for 3 (Table 1). Selectivity between PARPs might be achieved
by introducing novel contacts, or clashes, between inhibitor
compounds and the carboxyl group of Glu514 because many
of the PARPs lack glutamic acid in this position (Figure 3a).

Conclusion

In conclusion, while the structures of the PARP domains of
PARP-3 and PARP-1 are overall similar and the nicotinamide

binding clefts are conserved, they differ in the length and
position of their D-loops and the lower surfaces of their donor
sites constitute different environments. Our crystal structures
of PARP-3 in complex with one potent and three weaker
inhibitors revealed structural features that will be useful in the
rational design of selective PARP inhibitors.
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